ارائه الگوی کیفیت حسابرسی مبتنی بر هوش مصنوعی در محیط حسابرسی ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری ،گروه حسابداری،واحد علوم و تحقیقات ،دانشگاه آزاد اسلامی،تهران ،ایران

2 گروه حسابداری، واحد چالوس، دانشگاه آزاد اسلامی، چالوس، ایران

3 گروه حسابداری، واحد تهران جنوب، دانشگاه آزاد اسلامی، تهران، ایران

4 گروه مدیریت، واحد تهران شرق، دانشگاه آزاد اسلامی، تهران ،ایران

چکیده

موضوع و هدف مقاله:امروزه هوش مصنوعی به‌عنوان یکی از فناوری‌های نوظهور، تأثیر بسزایی بر حرفه حسابرسی دارد و می‌تواند به بهبود کیفیت حسابرسی منجر شود. هدف این پژوهش، طراحی الگوی کیفیت حسابرسی مبتنی بر هوش مصنوعی در محیط حسابرسی ایران است.
روش پژوهش: این مطالعه، با بهره‌گیری از روش تحقیق کیفی و رویکرد نظریه‌پردازی داده‌بنیاد، ابتدا عوامل مؤثر بر کیفیت حسابرسی شناسایی شده و سپس نقش فناوری‌های هوش مصنوعی در بهبود این عوامل مورد بررسی قرار گرفته است. داده‌های پژوهش از طریق مصاحبه‌های عمیق با خبرگان حوزه حسابرسی و فناوری اطلاعات گردآوری شده و با استفاده از کدگذاری باز، محوری و گزینشی تحلیل گردیده‌اند.
یافته های پژوهش: بر اساس یافته‌های پژوهش، الگویی مفهومی ارائه شده که به حسابرسان و نهادهای نظارتی در ایران کمک می‌کند تا با بهره‌گیری از ظرفیت‌های هوش مصنوعی، کیفیت حسابرسی را بهبود بخشند، و ضمن شناخت فرصت ها و چالش های فراروی حرفه حسابرسی در محیط ایران و مؤلفه های مؤثر بر آن ضرروت استفاده از هوش مصنوعی را در جهت توسعه کیفیت گزارش حسابرسی های خود مورد توجه قرار دهند.
نتیجه گیری، اصالت و افزوده آن به دانش: نتایج تحقیق نشان می‌دهد که استفاده از هوش مصنوعی در فرایندهای حسابرسی، از طریق افزایش دقت، کاهش ریسک تقلب، بهبود کشف ناهنجاری‌ها و تسریع تحلیل داده‌ها، تأثیر مثبتی بر کیفیت حسابرسی دارد. همچنین، چالش‌هایی مانند هزینه‌های پیاده‌سازی، مقاومت در برابر تغییر و نیاز به آموزش متخصصان، به‌عنوان موانع اصلی شناسایی شدند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Providing an AI-based audit quality model in the audit environment of Iran.

نویسندگان [English]

  • yasaman khosravi 1
  • nemat rostami mazouie 2
  • hosein badie 3
  • fatemeh samadi 4
1 PhD Student, Accounting Department, Science and Research Branch, Islamic Azad University, Tehran, Iran
2 . Department of Accounting, Chalus Branch, Islamic Azad University, Chalus, Iran,
3 Department of Accounting, South Tehran Branch, Islamic Azad University, Tehran, Iran
4 Department of Management, Tehran East Branch, Islamic Azad University, Tehran, Iran
چکیده [English]

Purpose:Today, artificial intelligence (AI), as one of the emerging technologies, has a significant impact on the auditing profession and can lead to improved audit quality. The purpose of this study is to design an AI-based audit quality model within the auditing environment of Iran.
Research Method: In this regard, using a qualitative research method and a grounded theory approach, the factors affecting audit quality were first identified, and then the role of AI technologies in enhancing these factors was examined. The research data were collected through in-depth interviews with experts in the fields of auditing and information technology and were analyzed using open, axial, and selective coding.
Finding:Based on the research findings, a conceptual model has been proposed to assist auditors and regulatory bodies in Iran in leveraging AI capabilities to enhance audit quality,Recognizing the opportunities and challenges facing the auditing profession in Iran and the influencing factors, auditors should consider the necessity of using artificial intelligence to enhance the quality of their audit reports.
Conclusion,Originality and its Addition to Knowledge:The results of the study indicate that the use of AI in auditing processes positively affects audit quality by increasing accuracy, reducing fraud risk, improving anomaly detection, and accelerating data analysis. Moreover, challenges such as implementation costs, resistance to change, and the need for specialist training were identified as the main obstacles.

کلیدواژه‌ها [English]

  • Artificial Intelligence
  • Audit Quality
  • Auditing environment
Aduloju, Kunle, Olowokudejo Folake, and Obalola Musa. (2014). Information technology and customer service performance among insurance companies in Nigeria. European Journal of Business and Management, 6: 80–87. https://iiste.org/Journals/index.php/EJBM/article/view/10789
Akinadewo, I.S. (2021). Artificial intelligence and accountants’ approach to accounting functions. Covenant Journal of Politics & International Affairs, 9(1), 40-55. https://doi.org/10.22364/cjpa.9.1.4
Albawwat, I, and Frijat Yaser. (2021). An analysis of auditors’ perceptions towards Artificial Intelligence and its contribution to audit quality. Accounting, 7: 755–62. https://doi.org/10.5267/j.ac.2021.1.005
Al-Aroud, S F. (2020). The Impact of Artificial Intelligence Technologies on Audit Evidence. Academy of Accounting and Financial Studies Journal, 24: 1–11. https://www.abacademies.org/articles/the-impact-of-artificial-intelligence-technologies-on-audit-evidence-9475.html
Al-Sayyed, S. M; Al-Aroud, S. F; & Zayed, L. M. (2021). The effect of artificial intelligence technologies on audit evidence. Accounting, 281–288. . https://doi.org/10.5267/j.ac.2021.1.005
Amir, E; Kallunki, J.P. and H. Nilsson. (2014). The Association Between Individual Audit Partners’ Risk Preferences and the Composition of Their Client Portfolios. Review of Accounting Studies, 19: 103–133. https://doi.org/10.1007/s11142-013-9245-8
Awotomilusi, N; Dagunduro, M.E; & Osaloni, B.O. (2022). Adoption of cloud computing on the efficacy of accounting practices in Nigeria. International Journal of Economics, Business and Management Research, 6(12), 194-205. https://www.researchgate.net/publication/367890123
Baldwin, A, Brown C E; and Trinkle B S. (2006). Opportunities for Artificial Intelligence Development in the Accounting Domain: The Case for Auditing. Intelligent Systems in Accounting, Finance and Management, 14: 77–86. https://doi.org/10.1002/isaf.277
Cameran, M; Campa, D. and J. R. Francis. (2017). How Important is Partner Variation in Explaining Audit Quality? Working paper, European Accounting Association, May 2017, Valencia, Spain.
Chassignol, M, Aleksandr K, Klimova A, and Bilyatdinova A. (2018). Artificial Intelligence trends in education: A narrative overview. Procedia Computer Science, 136: 16–24.
Chukwuani, V N, and Egiyi M A. (2020). Automation of Accounting Processes: Impact of Artificial Intelligence. International Journal of Research and Innovation in Social Science (IJRISS), 4: 444–49.
Chukwudi, O. Longinus, Silas C. Echefu, Uche Boniface, and Nnenna V. Chukwuani. (2018). Effect of Artificial Intelligence on the Performance of Accounting Operations among Accounting Firms in South East Nigeria. Asian Journal of Economics, Business and Accounting, 7: 1–11. https://doi.org/10.9734/AJEBA/2018/39905
Dagunduro, M.E; Falana, G.A; Adewara, Y.M. & Busayo, T.O. (2023). Application of Artificial Intelligence and Audit Quality in Nigeria. Humanities, Management, Arts, Education & the Social Sciences Journal, 11(1), 39-56. https://www.researchgate.net/publication/368123456
Gentner, D, Birgit S, Bujar R, and Leo B. (2018). Strategic foresight of future B2B customer opportunities through machine learning. Technology Innovation Management Review, 8: 5–17.
Gul, F. A; Wu, D. and Z. Yang. (2013). Do Individual Auditors Affect Audit Quality? Evidence From Archival Data. The Accounting Review, 88: 1993–2023. https://doi.org/10.2308/accr-50536
Hassan, R A. (2022). Artificial Intelligence (AI) in accounting & auditing: A Literature review. Open Journal of Business and Management, 10: 440–65. https://doi.org/10.4236/ojbm.2022.101027
Hemin, Ali Qadir. (2017). Will Artificial Intelligence Brighten or Threaten the Future Science, Ethics, and Society. Available online: https://www.researchgate.net/publication/323535179_
Hu, K.-H; Chen, F.-H; Hsu, M.-F; & Tzeng, G.-H. (2021). Identifying key factors for adopting artificial intelligence-enabled auditing techniques by joint utilization of fuzzy-rough set theory and MRDM technique. Technological and Economic Development of Economy, 27(2), 459-492. https://doi.org/10.3846/tede.2021.13181
ICAEW. (2016). Artificial Intelligence and the Future of Accountancy. Available online:
Ivy, M; Brown-Liburd, H. L; & Vasarhelyi, M. (2020). The ethical implications of using artificial intelligence in auditing. Journal of Business Ethics, 167(2), 209–234. https://doi.org/10.1007/s10551-019-04407-1
Jariwala, H V. (2015). Analysis of financial literacy level of retail individual investors of Gujarat State and its effect on investment decision. Journal of Business & Finance Librarianship, 20: 133–58. . https://doi.org/10.1080/08963568.2015.1006995
Javan, A; Babajani, J; Marfou, M; Barzideh, F. (2023). Audit quality: Presenting a model and examining the gap between the current and desired state. Quarterly Journal of Financial Accounting Studies, 20(79). (In Persian) https://doi.org/10.22054/qjma.2022.69623.2406
Kaplan, Andreas, and Michael Haenlein. (2019). Siri, Siri, in my hand: Who’s the fairest in the land? On the interpretations, illustrations, and implications of Artificial Intelligence. Business Horizons, 62: 15–25. https://doi.org/10.1016/j.b ushor.2018.08.004
Knechel, W. R; Vanstraelen, A. and Zerni M. (2015). Does the Identity of Engagement Partners Matter? An Analysis of Audit Partner Reporting Decisions. Contemporary Accounting Research, 32: 1443–1478. https://doi.org/10.1111/1911-3846.12113
Kokina J; Davenport T H. (2017). The Emergence of Artificial Intelligence: How Automation is Changing Auditing. Journal of Emerging Technologies in Accounting, 14(1), 115–122. https://doi.org/10.2308/jeta-51730
Kokina, J; Blanchette, S; Davenport, T. H; & Pachamanova, D. (2025). Challenges and opportunities for artificial intelligence in auditing: Evidence from the field. International Journal of Accounting Information. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4671881
Lee, C S, and Farzana P. Tajudeen. (2020). Usage and Impact of Artificial Intelligence on Accounting: Evidence from Malaysian Organisations. Asian Journal of Business and Accounting, 13: 213–40.
Lidiana L. (2024). AI and Auditing: Enhancing Audit Efficiency and Effectiveness with Artificial Intelligence. Accounting Studies and Tax Journal (COUNT), 1(3), 214-223. https://doi.org/10.61186/count.1.3.214
Lin, P, and Hazelbaker T. (2019). Meeting the challenge of Artificial Intelligence. CPA Journal, 89: 48–52. Available online: https://www.cpajournal.com/2019/07/03/meeting-the-challenge-of-artificial-intelligence/ (accessed on 27 May 2022).
Moffitt, K C; Andrea M. R, and Miklos A. V. (2018). Robotic process automation for auditing. Journal of Emerging Technologies in Accounting, 15: 1–10. https://doi.org/10.2308/jeta-10589
Musa, A & lefkir, H. (2024). The role of artificial intelligence in achieving auditing quality for small and medium enterprises in the Kingdom of Saudi Arabia. International Journal of Data and Network Science, 8(2), 835-844. https://doi.org/10.5267/j.ijdns.2023.12.005
Nickerson, M A. (2019). AI: New Risks and Rewards. Available online: https://sfmagazine.com/post-entry/april2019-ai-new-risksand-rewards (accessed on 11 May 2022).
Nwakaego, D A, and Ikechukwu O I. (2015). The effect of accounts payable ratio on the financial performance of food and beverages manufacturing companies in Nigeria. Journal of Research in Business and Management, 3: 15–21. https://www.questjournals.org/jrbm/papers/vol3-issue9/C291521.pdf
OECD. (2021). Available online: Oecd.org (accessed on 3 May 2022). https://www.oecd.org
Omoteso, Kamil. (2012). The application of Artificial Intelligence in Auditing: Looking back to the future. Expert Systems with Applications, 39: 8490–95. https://doi.org/10.1016/j.eswa.2012.01.098
Reddy, P. S; Yasaswi, K. R. K; & Kumar, B. K. (2019). Accounting Intelligence-The New Era in Accounting. Journal of Information and Computational Science, 9, 692-697. https://joics.org/gallery/ics-2434.pdf
Schulenberg, Jennifer L. (2007). Analysing police decision-making: Assessing the application of a mixed-method/mixed-model research design. International Journal of Social Research Methodology, 10: 99–119. https://doi.org/10.1080/13645570701334050
Sorkhabi, N; Mohammadzadeh Saltah, H; Nonehal Nahr, A; Abdi, R. (2022). Proposing a model for performance audit quality in the public sector of Iran using grounded theory. Accounting and Auditing Research, 56. (In Persian) https://doi.org/10.22051/ijar.2022.38787.1819
Zare, H; Hajihaha, Z; Keyghobadi, A. (2023). Presenting an evaluation model for the quality of the financial statement audit process using artificial intelligence. Audit Knowledge Journal, 23(92).(In Persian) https://danesh.dmk.ir/article-1-3070-fa.html
Ziyoudar, Z. (2022). Application of artificial intelligence techniques in the field of finance and accounting. Scientific Journal of Modern Research Approaches in Management and Accounting, 6(20), 1557-1572. (In Persian) https://www.majournal.ir/index.php/ma/article/view/1368