Designing a model for using big data in the field of taxation of natural persons in order to prevent tax evasion

Document Type : Research Paper

Authors

1 Department of accounting, Najafabad branch, Islamic azad university, Najafabad, Iran

2 Department of Accounting, Najafabad Branch, Islamic Azad University, Najafabad, Iran

Abstract

Objective: This research was conducted with the aim of providing a model for using big data in the field of taxation of natural persons in Iran in order to prevent tax evasion. Big data is impacting almost every aspect of the accounting profession and is rapidly becoming a major focus point for professional accountants (regardless of their specialty) internationally. As technological capabilities have improved, the profession has also expanded and developed by incorporating new non-financial data sources. This approach provides opportunities to increase audit quality and accounting information quality.
Research method: the research was conducted qualitatively and through interviews with 19 specialists and people working in the tax affairs organization and related to the field of personal taxes; From the sampling method to the theoretical saturation stage, 370 codes, 33 concepts and 17 extraction categories and their characteristics were extracted in the sample companies during this coding process.
Findings: The research showed that the indicators used to detect tax evasion and fraud are large internal and external data sets, including: demographic characteristics, taxpayer or company characteristics, previous files, call center data, and audit history

Keywords

Main Subjects


عبداله میلانی، مهنوش؛ بهرامی، جاوید؛ توکلیان، حسین؛ اکبرپور روشن، نرگس. (1397). اثر سیاست‌های مالیاتی بر اقتصاد زیرزمینی: الگوی DSGE. پژوهش‌های اقتصادی ایران، 23(76)، 1-51. doi: 10.22054/ijer.2018.9511
صامتی، مجید؛ ایزدی، افسانه؛ فتحی، سعید. (1400). تعیین عوامل مؤثر بر فرار مالیاتی با استفاده از روش فرا تحلیل. اقتصاد با ثبات و توسعه پایدار، 2(2)، 1-22.
doi: 10.22111/sedj.2021.38231.1113
جعفری، علی؛ فرامرزیانی، سعید؛ ملک پور، محمود. (1395). رابطه مهارت های ارتباطات انسانی با سطح یادگیری دانشجویان علمی کاربردی استان اردبیل. فناوری آموزش و یادگیری، 2(7)، 131-151. doi: 10.22054/jti.2019.26821.1225
ایزدی، افسانه؛ صامتی، مجید و اکبری، نعمت اله.(1399). برآورد میزان فرار مالیاتی در ایران با استفاده از روش MIMIC طی دوره (1399-1355). پژوهشنامه مالیات، 28(48 (96 پیاپی) )، 7-32. SID. https://sid.ir/paper/392684/fa
سهرابی، بابک؛ رئیسی وانانی، ایمان؛ قانونی شیشوان، وحیده. (1394). ارزیابی مالیات عملکرد شرکت‌ها و تحلیل روندهای مالیاتی با استفاده از الگوریتم‌های داده‌کاوی. تحقیقات مالی، 17(2)، 219-238. doi: 10.22059/jfr.2015.57311
ثقفی، علی؛ جوانی قلندری، موسی. (1395). داده های بزرگ چگونه حسابداری مالی را تغییر خواهند داد؟. حسابداری و منافع اجتماعی, 6(3), 35-50. doi: 10.22051/ijar.2016.2530
Abdollah Milani, M; Bahrami, J; Tavakolian، H; & Akbarpur, N. (2018). The Impact of Tax Policy on the Underground Economy: DSGE Model, Iranian Journal of Economic Research, 23(76), 1-51.
doi: 10.22054/ijer.2018.9511. (In Persian).
Alstadsæter, A; Johannesen, N; & Zucman, G. (2019). Tax evasion and inequality. The American Economic Review, 109(6), 2073–2103
Ansah, S; Moyes, G. D; Babangida Oyelere, P; & Hay, D. (2002). An empirical analysis of the likelihood of detecting fraud in New Zealand. Managerial Auditing Journal, 17(4), 192-204. ‏
Benkraiem, R; Uyar, A; Kilic, M; & Schneider, F. (2021). Ethical behavior، auditing strength، and tax evasion: A worldwide perspective. Journal of International Accounting, Auditing and Taxation، 43،
Chandarana, P; and Vijayalakshmi, M. (2014). Big Data Analytics Frameworks. 2014 International Conference on Circuits, Systems, Communication and Information Technology Applications (CSCITA), Pp. 430-434.
Chen, H; Chiang, R; & Storey, V. (2012). Business intelligence and analytics: from big data to big impact, Mis Q. 36 (4). 1165-1188.
Cockcroft, S; ans Russell, M. (2018). Big Data Opportunities for Accounting and Finance Practice and Research. Australian Accounting Review, https://onlinelibrary. wiley. com/doi/abs/10. 1111/auar. 12218
Cokins, G. (2014). Top 7 Trends in Management Accounting ، Part 2. Strategic Finance, Vol. 95, No. 7, Pp. 41–47.
Saghafi, A; & Javani Ghalandari, M. (2016). How Big Data Will Change Financial Accounting? Journal of Accounting and Social Interests, 6(3), 35-50.
doi: 10.22051/ijar.2016.2530
Decho, A. W; & Luoma, S. N. (1996). Flexible digestion strategies and trace metal assimilation in marine bivalves. Limnology and Oceanography,  41(3), 568-572. ‏
Fay, R. & Negangard, E. (2016). Searching Enron’s emails for clues: Performing electronic document review and analysis. Working paper.
Hoover, J. N. (2009). States use BI, Data Warehousing to Recoup Unpaid Taxes. Intelligent Enterprise، 12.
Izadi, A; Sameti, M; & Akbari, N. (2021). Estimation of Tax Evasion in Iran Using MIMIC Method (1976-2016), J Tax Res; 28 (48), 7-32. (In Persian)
Jafari, A; Faramarziani, S; & Malek poor، M. (2016). The Relationship between Human Communication Skills and Ardabil Applied -scientific Students' Learning, Technology of Instruction and Learning, 2(7), 131-151.
doi: 10.22054/jti.2019.26821.1225. (In Persian).
Kemme, D. M; Parikh, B; & Steigner, T. (2020). Tax morale and international tax evasion. Journal of World Business, 55(3), 101052. ‏
Kirkos, E; Spathis, C; & Manolopoulos, Y. (2002). Data mining techniques for the detection of fraudulent financial statements. Expert systems with applications, 32(4), 995-1003. ‏
Mao, Y; He. J. X; Zhu, M; Dong, Y. Q; & He, J. X. (2021). Circ0001320 inhibits lung cancer cell growth and invasion by regulating TNFAIP1 and TPM1 expression through sponging miR-558. Human Cell, 34, 468-477. ‏
Mikalef, P; van de Wetering, R; & Krogstie, J. (2021). Building dynamic capabilities by leveraging big data analytics: The role of organizational inertia. Information & Management, 58(6), 103412.
Olendiy, O; Nazarova, K; Nezhyva, M; Mysiuk, V; Mishchenko, V; & Rusyn-Hrynyk, R. (2023). TAX AUDIT TO ENSURE BUSINESS PROSPERITY: TRENDS AND PERSPECTIVES. Financial & Credit Activity: Problems of Theory & Practice, 4(51).‏
Ruano, A; Hernandez, A; Ureña, J; Ruano, M; & Garcia, J. (2019). NILM techniques for intelligent home energy management and ambient assisted living: A review. Energies,  12(11), 2203. ‏
Sacco, P. L; Arenas, A; & De Domenico, M. (2023). The political economy of big data leaks: Uncovering the skeleton of tax evasion. Chaos, Solitons & Fractals, 168، 113182.‏
Saggi, MK, (2018). Jain S. A. survey towards integrating big data analytics to big insights for value-creation. Inf Process Manag, 54(5):758-90.
Sameti, M; Izadi, A; & Fathi, S. (2021). Determining Effective Factors on Tax Evasion using the Method of Meta-Analysis Abstract, Stable Economy Journal, 2(2), 1-22. doi: 10.22111/sedj.2021.38231.1113(In Persian)
Sohrabi, B; Raeesi Vanani, I; & Ghanooni Shishone, V. (2015). Evaluating the Corporate Tax Performance and Analyzing the Tax Trends through the Utilization of Data Mining Algorithms. Financial Research Journal, 17(2), 219-238.
doi: 10.22059/jfr.2015.57311(In Persian)
Strauss، Anselm L; & Corbin، Juliet (2011), Basics of Qualitative Research:Grounded Theory Procedures and Techniques, Sage.
Vasarhelyi, M; A; Kogan and B. Tuttle. (2015). Big data in accounting: An overview. Accounting Horizons, Vol. 29، No. 2, Pp. 381–396.
Vidgen, R; Shaw, S; & Grant, D. B. (2017). Management challenges in creating value from business analytics. European Journal of Operational Research, 261(2), 626-639.
Warren, J. D; Moffitt, Jr. K; and Byrnes, P. (2015). How Big Data Will Change Accounting? Accounting Horizons, Vol. 29, No. 2, Pp. 397-407.
Wiener, M; Saunders, C; Marabelli, M; (2020). Big-data business models: a critical literature review and multiperspective research framework, J. Inf. Technol, 35(1) 66-91.
Zhu, C; H. (2018). Big Data as a Governance Mechanism. Working Paper. available at: https://ssrn. com/abstract=3164624.